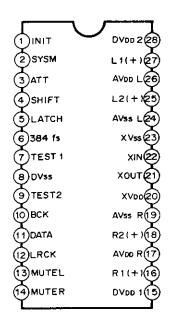
SONY.

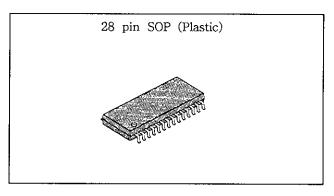
CXD2565M

オーディオ用1ビット方式 DA コンバータ (DF 内蔵)

概要

CXD2565Mは,特にCDプレーヤ用として開発された8倍 オーバーサンプリング・デジタルフィルタ内蔵の1ビット方 式ステレオDAコンバータです。(マスタークロック768fs)


特 性


- デジタルフィルタ部 ・リップル:0.002dB以下
- 减衰量: 75dB以上
- DAC部
- •ダイナミックレンジ:116dB(理論値)
- •S/N:96dB以上
- 歪率: 0.004%以下

特 長

- ・マスタークロック 768fs
- ソニーオリジナル新方式3次ノイズシェーパー採用
- PLM 方式パルス変換出力(コンプリメンタリー PLM)
- ダイレクト・デジタルシンク
- 入力語長 18/16 ビット選択可

端子配列図 (Top View)

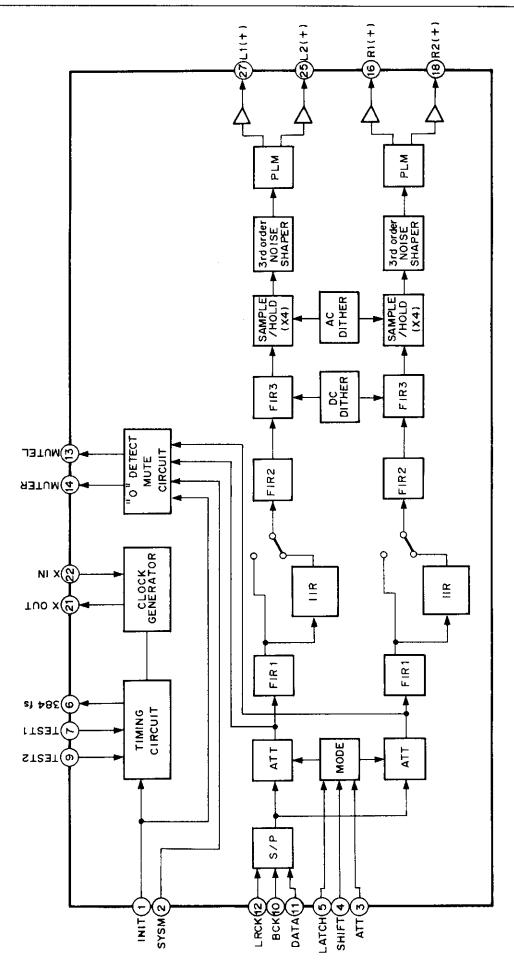
構造

シリコンゲート CMOS

用 途

CDプレーヤ, CD-Iプレーヤなど

絶対最大定格


• 電源電圧	Vdd	- 0.5~6.5	V
•入力電圧	VI	$-0.3 \sim V_{DD} + 0.3$	V
• 許容損失	Pp (Ta	= 60°C) 500	mW
•保存温度	Tstg	- 55~150	°C

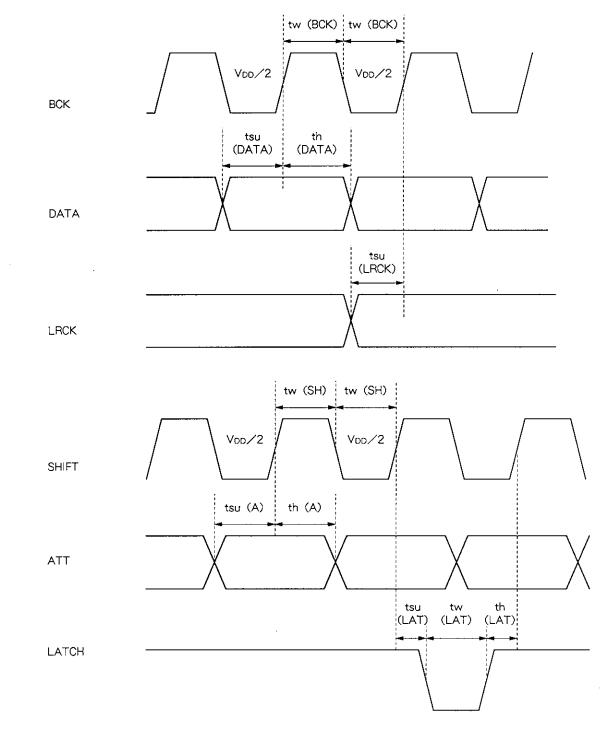
推奨動作条件

• 電源電圧	Vdd	4.75~5.25	V
• 動作温度	Та	$-10 \sim 60$	°C
 OSC 周波数 	Fx (768fs)	24.0~37.0	MHz

本資料に記載されております規格等は、改良のため予告なく変更することがありますので、ご了承ください。 また本資料によって、記載内容に関する工業所有権の実施許諾や、その他の権利に対する保証を認めたものではありません。 なお資料中に、回路例が掲載されている場合、これらは使用上の参考として、代表的な応用例を示したものですので、これら 回路の使用に起因する損害について、当社は一切責任を負いません。

端子説明

端子番号	端子記号	I/O	說 明		
1	INIT	I	本信号の立ち上がりエッヂで再同期		
2	SYSM	I	システム・ミュート入力		
3	ATT	I	シリアル・コントロール・データ入力		
4	SHIFT	I	シフト・クロック入力		
5	LATCH	I	ラッチ・クロック入力		
6	384fs	0	384fsクロック出力		
7	TEST1	I	テスト用端子 通常使用時は"L"レベルに固定		
8	DVss		デジタルGND		
9	TEST2	I	テスト用端子 通常使用時は"L"レベルに固定		
10	BCK	I	BCK入力		
11	DATA	I	データ入力		
12	LRCK	I	LRCK入力		
13	MUTEL	0	Lch ミュートフラグ出力		
14	MUTER	0	Rchミュートフラグ出力		
15	DVDD1		デジタル電源		
16	R1 (+)	0	Rch PLM出力1(正相)		
17	AVDDR		Rch用アナログ電源		
18	R2 (+)	0	Rch PLM出力2(正相)		
19	AVssR	·	Rch用アナログ GND		
20	XVdd		マスター・クロック電源		
21	XOUT	0	X'tal 発振出力端子(768fs)		
22	XIN	I	X'tal 発振入力端子(768fs)		
23	XVss		マスター・クロック GND		
24	AVssL		Lch用アナログ GND		
25	L2 (+)	0	Lch PLM出力2(正相)		
26	AVDDL		Lch用アナログ電源		
27	L1 (+)	0	Lch PLM出力1 (正相)		
28	DVDD2		デジタル電源		


電気的特性

項	8	記号	条件	最小値	標準値	最大値	単位
	XIN	VIHX		0.90VDD			V
"H"入力電圧	その他	VIH		0.76Vdd			V
	XIN	VILX				0.10Vdd	V
"L"入力電圧	その他	Vīl				0.24Vdd	V
入力リーク電流		II		- 5.0		5.0	μA
	384fs	Vон	Io = - 0.4mA	VDD - 0.5			V
	R1, R2 (+) L1, L2 (+)	Voha	Io = -12mA	Vdd - 0.5			v
"H"出力電圧	XOUT	Vohx	Io = - 1.2mA	Vdd - 0.5			V
	MUTEL, MUTER	Vонм	Io = - 1.0mA	Vdd - 0.5			v
	384fs	Vol	Io = 0.4mA			0.4	V
"L"出力電圧	R1, R2 (+) L1, L2 (+)	Vola	Io = 12mA			0.5	v
	XOUT	Volx	Io = 1.2mA			0.5	v
	MUTEL, MUTER	Volm	Io = 1.0mA			0.4	v
消費電流	• • • • • •	ממן			20	60	mA

交流特性 (DVDD = XVDD = AVDDR = AVDDL = 5.0V ± 5%, DVss = XVss = AVssL = AVssR = 0V, Ta = -10~60°C)

項 目	記号	条件	最小値	標準値	最大値	単位
BCKパルス幅	tw (BCK)		156			nsec
DATAセットアップ時間	tsu (DATA)		20			nsec
DATA ホールド時間	th (DATA)		20			nsec
LRCK セットアップ時間	tsu (LRCK)		50	-		nsec
XIN デューティ	duty (XIN)	VDD/2 at 33MHz		50		%
SHIFTパルス幅	tw (SH)		100			nsec
ATTセットアップ時間	tsu (A)		20			nsec
ATT ホールド時間	th (A)		20			nsec
LATCHセットアップ時間	tsu (LAT)		18	20		nsec
LATCHホールド時間	th (LAT)		100			nsec
LATCHパルス幅	tw (LAT)		100			nsec

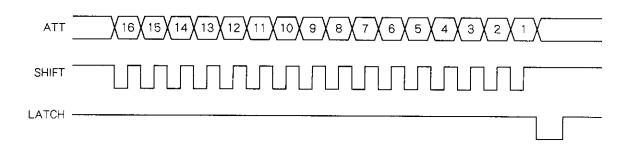
入力/AC タイミング

アナログ特性	$(DV_{DD} = XV_{DD} = AV_{DD}R = AV_{DD}L = 5.0V, DV_{SS} = XV_{SS} = AV_{SS}L = AV_{SS}R = 0V, Ta = 25^{\circ}C)$
ノノロノ付住	(DVDD - AVDD - AVDDA - AVDDA - 5.0V, DVSS - AVSS - AVSSA - 0V, Ta - 25 C)

項目	記号	条 件	最小値	標準値	最大値	単位
全高調波歪率	THD + N	入力データ 1kHz, 0dB (Fs = 44.1kHz)		0.0030	0.0040	%
S/N比	S∕N	入力データ1kHz, 0/-∞0dB (Fs = 44.1kHz)	96			dB

機能説明

① ミュート機能


- (1) ゼロ・データ検出
 - 検出はアッテネーション処理の後で行われます。
 - 入力データの上位14ビットがオール "0" またはオール "1" で、かつ残りの下位ビットがDCと言う状態が続いた場合、ゼロ検出フラグが出力されます。
 - 検出時間は、60ミリ秒か、300ミリ秒をシリアルコントロールで選択することができます。
 - ゼロ検出フラグを出力中も、デジタルフィルタは通常動作をします。
- (2) デジタル・フィルタ ミュート (D/F MUTE)
 - シリアル・コントロールのATTモード中の "MUTE" が "H"の時, アクティブになります。
 - D/F部からの出力は、["0" + DCオフセット] にセットされます。
 - デジタルフィルタの内部演算は,通常動作をします。
- (3) ノイズ・シェーパー ミュート (NS MUTE)
 - シリアル・コントロールのシステム・モード中の "NS MUTE" が "H" で以下の条件が一つでも成立した時, アク ティブになります。
 - ゼロ検出フラグが立った時。
 - 入力端子 "SYSM" に "H"(=ミュート)が入力された時。
 - D/F MUTEフラグが立った時。
 - ノイズ・シェーパーの出力は, D/F部で加算されている DC オフセット成分を持つ出力に, 切り替えられます。
 - ノイズ・シェーパーの内部演算はそのまま動作させ、ミュート解除後は直ちにノイズ・シェーパーからの出力に切り 替えられます。
- (4) INIT "L" のミュート
 - D/F部の入力データをゼロにセットします。
 - 内部RAMをクリアします。
 - D/F部の出力を["0" + DCオフセット]にセットします。
 (内部RAMクリア後, 内部INIT以前)
 - 内部 INIT "L"後,前置ホールド部を含むノイズ・シェーパー部レジスタをクリアし,出力をデューティー 50%の PWM (0に相当)にセットします。

② ミュート・フラグ出力(MUTEL, MUTER 端子)

- 以下の条件のうち一つでも成立した時に、ミュート・アクティブのフラグをMUTEL、MUTER 端子から出力します。 (フラグの極正は、シリアル・コントロールで選択可能です)
 - ゼロ検出フラグが立った時。
 - 入力端子 "SYSM" に "H" (=ミュート) が入力された時。
 - D/F MUTEフラグが立った時。
 - 外部 INIT がアクティブになった時。

③ シリアル・コントロール

- ATT, SHIFT, LATCH端子に、モードデータを転送することによりモード設定を行います。
- 転送フォーマットを以下に示します。

- ビット1のデータは常に"O"とします。
- ビット2のデータが "0"の時アッテネートモードとなります。
 ビット2のデータが "1"の時システムモードとなります。
- 設定は、外部 INIT 解除後に行います。
 (次頁にモード設定表を示します)
- * SYNC機能について
 - シリアル・コントロールのシステムモードの中の "SYNC" が "H" にセットされる時, その立ち上がり時より一回だけ, 再同期をかけにいきます。
 - 内部の同期がとれるまで,最低4fs周期,最高5fs周期を要します。

シリアル・コントロール

• アッテネート・モード

ビット	モード・フラグ	機能	"H"	"L"
1	MODE1	MODE 切り替え	テストモード	ノーマルモード
2	MODE2	MODE 切り替え	システムモード	アッテネートモード
3	EMP	ディエンファシス	ON	OFF
4	MUTE	"0" + DCオフセット出力	ON	OFF
5	ATT1	アッテネートデータ (MSB)		
6	ATT2	アッテネートデータ		
7	ATT3	アッテネートデータ		
8	ATT4	アッテネートデータ		
9	ATT5	アッテネートデータ		
10	ATT6	アッテネートデータ		
11	ATT7	アッテネートデータ		
12	ATT8	アッテネートデータ		
13	ATT9	アッテネートデータ		
14	ATT10	アッテネートデータ		
15	ATT11	アッテネートデータ		
16	ATT12	アッテネートデータ (LSB)		

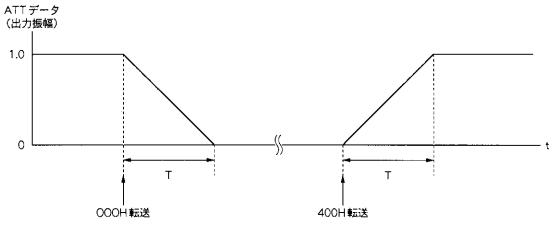
* INIT "L" で, MODE1, MODE2, EMP, MUTEは "L" にリセット, ATTは "400"Hにセット

• システム・モード

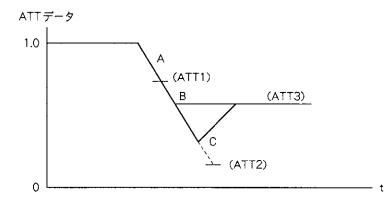
ビット	モード・フラグ	機能	"H"	"L"
1	MODE1	MODE 切り替え	テストモード	ノーマルモード
2	MODE2	MODE切り替え	システムモード	アッテネートモード
3	IFORM	入力データ形式	LSBファースト	MSBファースト
4	IBIT	入力データ語長	18ビット	16ビット
5			don't	care
6			don't	care
7			don't	care
8	TEST1	テストモードの設定	通常使用時は	t"L"に固定
9	TEST2	テストモードの設定	通常使用時は	t"L"に固定
10	NS	ノイズシェーピング	don't	care
11	MT1	ゼロデータ検出時間	60ミリ秒	300ミリ秒
12	MT2	ゼロミュートフラグの極性	"H"でミュート	"L" でミュート
13	FS32	ディエンファシスの fsの選択	* 下ā	表参照
14	FS48	ディエンファシスのfsの選択	* 下書	表参照
15	SYNC	入出力の同期	ON	OFF
16	NSMUTE	NSミュート機能	ON	OFF

* INIT "L" で, すべて "L" にリセット

* ディエンファシスのfsの選択

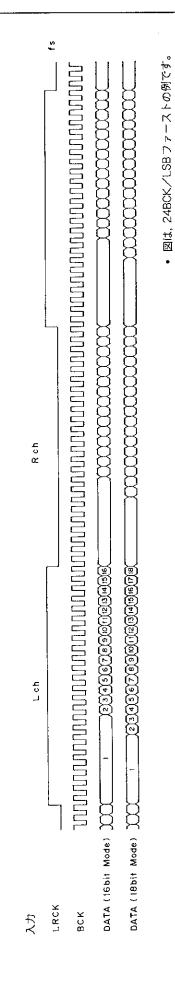

		32.0k	44.1k	48.0k	37.8k
13	FS32	"H"	"L"	"L"	"H"
14	FS48	"H"	"L"	"H"	"L"

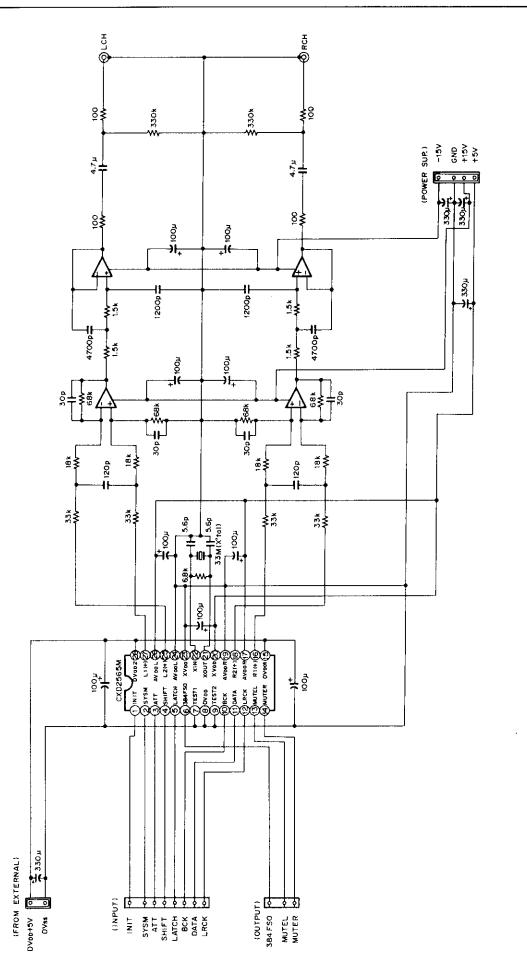
- ④ INIT 機能
 - 外部 INIT 信号立ち上がり後, 再同期がかけられたら直ちに D/F部と NS部は同時にリセット解除されます。
 - 外部LRCK は外部 INIT 信号によって変化しないので, 外部 INIT 信号の立ち上がり後, 最初の外部LRCK に対し, 内部 LRCK の位相をマスタークロック・レベルで合わせ込みます。
 - 内部の同期がとれるまで最低4fs周期,最高5fs周期を要します。
 - 内部 INIT は,外部 INIT 信号立ち下がり後,約2~2.5 ミリ秒遅らせています。

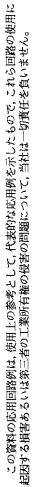

⑤ 倍速の動作について

- 倍速で入力してきた信号に対して同期を保ち、内部演算は標準速のままで行われます。
- ⑥ アッテネータ
 - ATT データはビット5 (MSB) ~ビット16 (LSB) の12ビットを使って転送されます。大きさは、000H (0.0) ~400H
 (1.0) となっています。

INIT: "L"でATTデータとして400Hがセットされます。

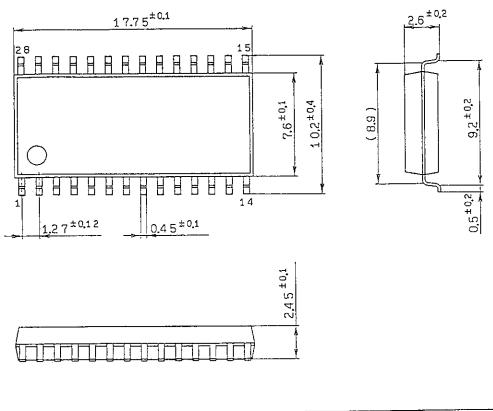

ソフトミューティングはATTとして000Hを転送することにより行います。解除するときは、ソフトミューティングをかけ る前のATTデータ(上図では400H)を転送します。




このように新しい ATT データへは、常にソフトミューティングの動作で移っていきます。上図のように ATT1 > ATT3 > ATT2 という ATT データを考え、まず ATT1 が転送され次に ATT2 が転送されたとします。ATT1 の値になる前に(図中 A の状態)ATT2 が転送された場合は ATT1 は無視されそのまま ATT2 の値に近づいていきます。

次にATT2が転送され、ATT2の値になる前に(図中BまたはC)ATT3が転送されると、ATT2は無視され、ATT3の値に近づいていきます。

データ入力タイミング



- 12 -

CXD2565M

外形寸法図 単位:mm

28pin SOP (Plastic) 375mil

SONY	NAME	SOP-28P-L121
EIAJ	NAME	*SOP028-P-0300-AX
JEDEC	CODE	